Abstract
The paper first discusses the recently reported fractional-order Lorenz system, analyzes it by using the frequency-domain approximation method and the time-domain approximation method, and finds its chaotic dynamics when the order of the fractional-order system varies from 2.8 to 2.9 in steps of 0.1. Especially for the fractional-order Lorenz system of the order as low as 2.9, the results obtained by the frequency-domain method are consistent with those obtained by the time-domain method. Some Lyapunov exponent diagrams, bifurcation diagrams, and phase orbits diagrams have also been shown to verify the chaotic dynamics of the fractional-order Lorenz system. Then, an analog circuit for the fractional-order Lorenz system of the order as low as 2.9 is designed to confirm its chaotic dynamic, the results from circuit experiment show that it is chaotic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Systems Science & Control Engineering: An Open Access Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.