Abstract

Background: The evidence has shown the relationship between the microbiota of the face and several skin conditions. However, for rosacea patients, the changes in the facial skin microbiota still remain unknown. Objectives: This study was performed to explore the correlation between the facial skin microbiota and rosacea and analyze and characterize the facial skin microbiota of rosacea patients in comparison to healthy controls using 16S rDNA amplicon sequencing. Methods: A total of 27 rosacea patients and 25 healthy controls were matched. The DNA was extracted from participants’ skin swabs taken from the nose, chin, forehead, and bilateral cheeks. The V3V4 region of the 16S rRNA gene was sequenced using Illumina MiSeq technology. The diversity of the face skin microbiota was examined using alpha and beta diversity. Utilizing linear discriminant analysis effect size (LEfSe), the quantitative study of biomarkers in the two groups was carried out. Clusters of orthologous groups and Kyoto encyclopedia of genes and genomes function predictions were made at the genus level utilizing phylogenetic investigation of communities by reconstruction of unobserved states. Results: The alpha diversity of the facial skin microbiota increased significantly in rosacea patients, and beta diversity showed substantial differences between the rosacea and healthy control groups. The facial skin microbiota community structure changed in rosacea patients; however, the dominant strains were the same as in healthy controls, both being Propionibacterium acnes and Staphylococcus epidermidis. The LEfSe demonstrated that Xanthomonas, Acinetobacter, and Pseudomonas were enriched in the rosacea patients; nevertheless, Corynebacterium, Finegoldia, and Peptoniphilus were enriched in the healthy controls. The rosacea patients showed significantly decreased expression in the pathways of membrane transport, carbohydrate metabolism, metabolic diseases, amino acid transport and metabolism, carbohydrate transport and metabolism, transcription, and inorganic ion transport and metabolism. Conclusions: The facial skin microbiota diversity and community structure changed, and the expression of several metabolic pathways was downregulated in the rosacea patients in comparison to the healthy controls, which might outline new strategic methods for the surveillance, diagnosis, and treatment of rosacea.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call