Abstract

Dark-grown, DCMU-adapted Euglena gracilis Z (ZR) are able to undergo light-induced chloroplast development in the presence or absence of DCMU. The differentiated chloroplasts are photosynthetically active and are resistant not only to DCMU, but also to an analog, o-phenanthrolene. When DCMU overdoses are added to ZR cells or to chloroplasts isolated from these cells, photosynthesis is partially inhibited. A brief period of darkness removes this inhibition. This recovery phenomenon is related to DCMU resistance, since it is not exhibited by non-resistant control cells. The chloroplast protein synthesis apparatus is not involved in DCMU resistance. Rather, this phenomenon is apparently related to new characteristics of thylakoids. It is shown that photosynthetic recovery by ZR cells depends on the accessibility and fluid properties of membranes. The analysis of fluorescence induction kinetics shows that changes in the environmental conformation of photosystem II units occur during recovery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.