Abstract

We prove well-posedness and regularity results for elliptic boundary value problems on certain singular domains that are conformally equivalent to manifolds with boundary and bounded geometry. Our assumptions are satisfied by the domains with a smooth set of singular cuspidal points, and hence our results apply to the class of domains with isolated oscillating conical singularities. In particular, our results generalize the classical L2-well-posedness result of Kondratiev for the Laplacian on domains with conical points. However, our domains and coefficients are too general to allow for singular function expansions of the solutions similar to the ones in Kondratiev's theory. The proofs are based on conformal changes of metric, on the differential geometry of manifolds with boundary and bounded geometry, and on our earlier geometric and analytic results on such manifolds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.