Abstract

<span>Computer simulations are without a doubt a useful methodology that allows to explore research queries and develop prototypes at lower costs and timeframes than those required in hardware processes. The simulation tools used in cognitive radio networks (CRN) are undergoing an active process. Currently, there is no stable simulator that enables to characterize every element of the cognitive cycle and the available tools are a framework for discrete-event software. This work presents the spectral mobility simulator in CRN called “App MultiColl-DCRN”, developed with MATLAB’s app designer. In contrast with other frameworks, the simulator uses real spectral occupancy data and simultaneously analyzes features regarding spectral mobility, decision-making, multi-user access, collaborative scenarios and decentralized architectures. Performance metrics include bandwidth, throughput level, number of failed handoffs, number of total handoffs, number of handoffs with interference, number of anticipated handoffs and number of perfect handoffs. The assessment of the simulator involves three scenarios: the first and second scenarios present a collaborative structure using the multi-criteria optimization and compromise solution (VIKOR) decision-making model and the naïve Bayes prediction technique respectively. The third scenario presents a multi-user structure and uses simple additive weighting (SAW) as a decision-making technique. The present development represents a contribution in the cognitive radio network field since there is currently no software with the same features.</span>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call