Abstract

This paper proposes the conceptual integration of a Generation IV nuclear reactor, the gas-cooled fast nuclear reactor, and the thermo-electrochemical copper-chlorine cycle, a Brayton cycle, and a Rankine cycle for hydrogen and electricity production. This paper analyzes the developed system thermodynamically, and energy and exergy efficiencies are used to measure the system performance. Here, the four-step thermo-electrochemical copper-chlorine cycle produces hydrogen through thermochemical water decomposition, and electricity via the Rankine and Brayton cycles. The produced hydrogen is then compressed to reduce its storage volume. The proposed system uses a heat exchanger network, which is incorporated within the hydrogen producing copper-chlorine cycle. With the heat recovery network, the heat from the nuclear reactor is delivered to only two reactors of the four-step copper-chlorine cycle. The proposed system is modeled and simulated with engineering process simulation software (Aspen Plus). The overall energy and exergy efficiencies of the system are 14.1% and 20.7%, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call