Abstract

In this study, we conceptually develop and thermodynamically analyze a new continuous-type hybrid system for hydrogen production which photoelectrochemically splits water and performs chloralkali electrolysis. The system has a potential to produce hydrogen efficiently, at low cost, and in an environmentally benign way by maximizing the utilized solar spectrum and converting the byproducts into useful industrial commodities. Furthermore, by using electrodes as electron donors to drive photochemical hydrogen production, the hybrid system minimizes potential pollutant emissions. The products of the hybrid system are hydrogen, chlorine and sodium hydroxide, all of which are desired industrial commodities. The system production yield and efficiencies are investigated based on an operation temperature range of 20°C-80°C. A maximum energy efficiency of 42% is achieved between the temperatures of 40°C and 50°C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.