Abstract
The intelligent scheduling algorithm for hierarchical data migration is a key issue in data management. Mass media content platforms and the discovery of content object usage patterns is the basic schedule of data migration. We add QPop, the dimensionality reduction result of media content usage logs, as content objects for discovering usage patterns. On this basis, a clustering algorithm QPop is proposed to increase the time segmentation, thereby improving the mining performance. We hired the standard C-means algorithm as the clustering core and used segmentation to conduct an experimental mining process to collect the ted QPop increments in practical applications. The results show that the improved algorithm has good robustness in cluster cohesion and other indicators, slightly better than the basic model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.