Abstract

This work proposes a new theory to improve the phase noise of a Voltage-Controlled Oscillator (VCO) by introducing dual series resonances around the parallel resonance of an LC-tank circuit. The overall circuit has an improved susceptance slope parameters, which results in the improvement of quality (Q-) factor. Later, its effectiveness is demonstrated to design a low phase noise K-band VCO. The proposed characteristics are realized by a compact defected ground structure (DGS) resonator in a coplanar strip line (CPS) topology. The DGS is loaded by a capacitor, and this combination introduces the parallel resonance. The CPS signal line is implemented with high characteristic impedance to introduce a series inductance. Then, a gap in the CPS is introduced with a loading series capacitance forming a series resonance circuit with the CPS inductance. The overall combination of the series and parallel resonance circuits allowed the targeted two series resonances before and after the parallel resonance. The design is implemented in 0.18-μm CMOS technology, and the post-layout simulation shows that the VCO has a phase noise of −112.31 dBc/Hz @1 MHz offset of 22.07 GHz oscillation, which is 2.3 dB improvement compared to single series resonance VCO. The VCO consumes 4 mW power resulting in a figure of merit (FoM) of −193.2 dB.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call