Abstract

Abstract The perfectly matched layer (PML) is a technique initially proposed by Berenger for solving unbounded electromagnetic problems with the finite-difference time-domain method. In this work, we first formulate an equivalent PML model from the original Berenger PML model in the corner region, and then establish its stability. We further develop a discontinuous Galerkin method to solve this PML model, and discrete stability similar to the continuous case is proved. To demonstrate the absorbing property of this PML model, we apply it to simulate wave propagation in metamaterials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.