Abstract

A massive amount of electricity usage may be accessed on an everyday and hourly basis due to the advancement of smart power measuring technology. Electricity demand management and utility load management are made easier by energy usage forecasts. The majority of earlier studies have concentrated on the power consumption of business clients or residential buildings, or they have experimented with individual household electricity usage using behavioral and occupant sensor information. This study used smart meters to examine energy usage at a single household level to enhance residential energy services and gather knowledge for developing demand response strategies.The power usage of various appliances in a single household is estimated, by utilizing Autoregressive Integrated Moving Average (ARIMA) modeling technique, which is applied to daily, weekly, and monthly information granularity. To select the household’s energy consumption dataset for this study, a multivariate time-series dataset describing the four-year electricity usage of a household is provided. The use of Exploratory Data Analysis (EDA) is utilizedfor the selection of features and data visualization. The correlation coefficients with the daily usage of the household have been computed for the characteristics prepared for the forecast. The top three major determinants with the top three positive significance are "temperature," "hour of the day," and "peak index." A single household's usage is inversely related to the variables having negative coefficients. It should be noticed that the correlations among a household's attributes with usage vary from one another. Finally, the power prediction is analyzed in a single household.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call