Abstract

The aim of this work is to assess the influence of different degrees of adaptability of the power take-off (PTO) system on the power absorption of dense wave energy converter (WEC) arrays. The adaptability is included in simulations through a transmission ratio that scales the force actuating the PTO relative to the force generated by the motion of a floater. A numerical model is used in which hydrodynamic interactions between floaters and nonlinearities in the PTO are considered. The lower computational cost of this numerical model makes it possible to study the power extraction of a dense WEC array in irregular waves to easily create power matrices and other performance metrics. The methodology is applied to the case study of the Ocean Grazer WEC to showcase the potential performance improvements achieved through the inclusion of a transmission ratio. The analysis shows that including a high degree of adaptability and choosing WEC array configurations and PTO designs specific to potential deployment locations early in the design process can lead to an increase in extracted power.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.