Abstract
As 20 naturally occurring amino acids are coded by 61 mRNA codons out of 64, it is obvious that 61→20 cannot have one-to-one mapping which generates the problem of codon degeneracy. Despite several efforts there is no specific outcome which can describe this well-known enigmatic degeneracy of the codon table. Since, every biological behaviour is regulated by protein which in turn consists of amino acids bearing the inherent characteristics of degeneracy among mRNA codons (Crick F.H.C. The Origin of the Genetic Code. J. Mol. Biol.1968; 38: 367-379), it is worthy to analyse the impact of such degeneracy on biological behaviours. Here, based on mathematical models using the concept of b-type of the nucleotide bases and hamming distances, an effort has been initiated to understand the impact of biasness of genetic code degeneracy on biological behaviours. The proposed models have been utilized to understand the characteristic features of bacterial genes of gram-positive and gram-negative bacteria. To the best of our knowledge, this is the first mathematical model to capture the effect of genetic code degeneracy, showing a paradigm towards understanding the behavioural difference between gram-positive and gram-negative bacteria, and thereby opening a new avenue for revealing differential biological properties. Communicated by Ramaswamy H. Sarma
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.