Abstract

Eukaryotic cells respond to DNA damage or blocks to DNA replication by triggering a variety of "checkpoint" responses which delay cell cycle progression, modulate DNA replication, and facilitate DNA repair. Checkpoints play a vital role in maintaining genome integrity, particularly under conditions of genotoxic stress, and mutations in checkpoint genes can predispose to cancer and aging. Checkpoints are best understood at the molecular level in model organisms such as fission yeast, where the presence of aberrant DNA structures is sensed and relayed via signal transduction pathways to activate the checkpoint effector kinases, Chk1 and Cds1/ Chk2, which implement appropriate responses. Many of the yeast checkpoint sensor, transducer, and effector proteins are conserved in vertebrate cells, raising the question of whether they function in a similar or analogous way. DT40 cells provide a particularly tractable experimental system for genetic and biochemical dissection of checkpoints in vertebrates. Thus far, gene knockouts in DT40 have revealed that the Chk1 and Chk2 checkpoint effector kinases control a very different range of checkpoint responses in vertebrates compared to yeast. In future, these and other DT40 mutants will provide powerful tools for understanding the molecular basis of these unexpected differences and detailed studies of checkpoint mechanisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.