Abstract
During the last years the use of digital image correlation techniques (DIC) has become wide spread within different areas of research. One area in which these techniques are used is in the analysis of deformation of engineering materials. By the analysis of a set of successive images taken during a tensile test DIC makes it possible to determine how the deformation is localized. The observed local strains are often several times higher than the global strain measured by standard strain gauges. In this study, a set of compacted graphite cast irons (CGI) with different ratios of pearlite to ferrite have been examined by the use of DIC. In contrast to the normal use of DIC, where a pattern is sprayed on the tensile test sample as a reference for the determination of deformation taking place between successive images, the materials natural microstructural pattern has been used in this study. The use of the natural microstructural pattern makes it possible to study how the macroscopic deformation is accommodated within the different phases in the CGI studied. It is shown that the graphite phase accommodates a large portion of the strain and that the soft ferrite is strained more than the stronger, less ductile pearlite. The local strain of the observed area might be up to ten times higher than the global strain measured. The use of DIC improves the understanding of the deformation behaviour of compacted graphite cast irons and will be a useful tool when validating future finite element analyses of the micro-mechanical properties of cast irons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.