Abstract

Bibliometry is the quantitative study of scientific productions and enables the characterisation of scientific collaboration networks. However, with the development of science and the increase of scientific production, large collaborative networks are formed, which makes it difficult to extract bibliometrics. In this context, this work presents an efficient parallel optimisation of three bibliometrics for co-authorship network analysis using multithread programming: transitivity, average distance, and diameter. Our experiments found that the time taken to calculate the transitivity value using the sequential approach grows 4.08 times faster than the parallel proposed approach when the size of co-authorship network grows. Similarly, the time taken to calculate the average distance and diameter values using the sequential approach grows 5.27 times faster than the parallel proposed approach when the size of co-authorship network grows. In addition, we report relevant values of speed up and efficiency for the developed algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.