Abstract

The precise study of mechanically activated ion channels requires a combination of electrophysiology to directly measure channel-mediated ionic flux and a means to apply meaningful mechanical stimuli to activate the channel. In metazoans, individual cells in vivo experience mechanical inputs at the cell-substrate interface where cells form connections to the local microenvironment. To study such processes in vitro, a technique is required where mechanical stimuli can be applied to cells via connections with an underlying substrate. Here, we outline the methodology for combining whole-cell patch-clamp electrophysiology (to monitor transmembrane currents) with elastomer pillar arrays that can be deflected (to apply stimuli to cells). This quantitative technique can be used to assess changes in sensitivity and kinetics of mechanically evoked currents when cell intrinsic or cell extrinsic factors are manipulated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call