Abstract

We consider mark–recapture–recovery data with additional individual time-varying continuous covariate data. For such data it is common to specify the model parameters, and in particular the survival probabilities, as a function of these covariates to incorporate individual heterogeneity. However, an issue arises in relation to missing covariate values, for (at least) the times when an individual is not observed, leading to an analytically intractable likelihood. We propose a two-step multiple imputation approach to obtain estimates of the demographic parameters. Firstly, a model is fitted to only the observed covariate values. Conditional on the fitted covariate model, multiple “complete” datasets are generated (i.e. all missing covariate values are imputed). Secondly, for each complete dataset, a closed form complete data likelihood can be maximised to obtain estimates of the model parameters which are subsequently combined to obtain an overall estimate of the parameters. Associated standard errors and 95 % confidence intervals are obtained using a non-parametric bootstrap. A simulation study is undertaken to assess the performance of the proposed two-step approach. We apply the method to data collected on a well-studied population of Soay sheep and compare the results with a Bayesian data augmentation approach. Supplementary materials accompanying this paper appear on-line.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.