Abstract
This paper presents a detailed analytical approach for the bending analysis of reinforced concrete beams, integrating both structural mechanics principles and Eurocode 2 provisions. The general analytical expressions derived for the curvature were applied for the transverse displacement analysis of a simply supported reinforced concrete beam under four-point loading, focusing on key limit states: the initiation of cracking, the yielding of tensile reinforcement and the compressive failure of concrete. The displacement’s results were validated through experimental testing, showing a high degree of accuracy in the elastic and crack propagation phases. Deviations in the yielding phase were attributed to the conservative material assumptions within the Eurocode 2 framework, though the analytical model remained reliable overall. To streamline the computational process for more complex structures, a simplified model utilising a non-linear rotational spring was further developed. This model effectively captures the influence of cracking with significantly reduced computational effort, making it suitable for serviceability limit state analyses in complex loading scenarios, such as seismic impacts. The results demonstrate that combining detailed analytical methods with this simplified model provides an efficient and practical solution for the analysis of reinforced concrete beams, balancing precision with computational efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.