Abstract
In this study, we demonstrate how we can quantify environmental implications of large-scale events and traffic (e.g., human movement) in public spaces, and identify specific regions of a city that are impacted. We develop an innovative data fusion framework that synthesises the state-of-the-art techniques in extracting pollution episodes and detecting events from citizen-contributed, city-specific messages on social media platforms (Twitter). We further design a fusion pipeline for this cross-domain, multimodal data, which assesses the spatio-temporal impact of the extracted events on pollution levels within a city. Results of the analytics have great potential to benefit citizens and in particular, city authorities, who strive to optimise resources for better urban planning and traffic management.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.