Abstract

Google Play was launched under the name of Android Market and made its reputation known all over the world. The mobile application market, which is a package manager developed by Google for Android users, contains applications that appeal to many areas and age ranges. The wide area in which applications spread and the data flow, which has reached the level of being called “big data”, has started to attract the attention of researchers. The excessive increase in the number of applications makes it difficult for parents to follow up on the content. In order to provide content rating of applications on Google Play, it is needed to be classified by machine learning methods. In this study, content rating classification was made by analyzing “Category, Rating, Reviews, Size, Installs, Type, Genres, Last Updated, Current Version, Android Version” features of 10757 applications on Google Play, Ensemble Learning methods (Adaboost, Bagging, Random Forest, Stacking), Logistic Regression, Artificial Neural Network, K-Nearest Neighbors algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.