Abstract

BackgroundCues that guide gravid Anopheles gambiae sensu lato to oviposition sites can be manipulated to create new strategies for monitoring and controlling malaria vectors. However, progress towards identifying such cues is slow in part due to the lack of appropriate tools for investigating long-range attraction to putative oviposition substrates. This study aimed to develop a relatively easy-to-use bioassay system that can effectively analyse chemical attraction of gravid Anopheles gambiae sensu stricto.MethodsBG-Sentinel™ mosquito traps that use fans to dispense odourants were modified to contain aqueous substrates. Choice tests with two identical traps set in an 80 m2 screened semi-field system were used to analyse the catch efficacy of the traps and the effectiveness of the bioassay. A different batch of 200 gravid An. gambiae s.s. was released on every experimental night. Choices tested were (1) distilled versus distilled water (baseline) and (2) distilled water versus soil infusion. Further, comparisons were made of distilled water and soil infusions both containing 150 g/l of Sodium Chloride (NaCl). Sodium Chloride is known to affect the release rate of volatiles from organic substrates.ResultsWhen both traps contained distilled water, 45 % (95 confidence interval (CI) 33–57 %) of all released mosquitoes were trapped. The proportion increased to 84 % (95 CI 73–91 %) when traps contained soil infusions. In choice tests, a gravid female was twice as likely to be trapped in the test trap with soil infusion as in the trap with distilled water (odds ratio (OR) 1.8, 95 % CI 1.3–2.6). Furthermore, the attraction of gravid females towards the test trap with infusion more than tripled (OR 3.4, 95 % CI 2.4–4.8) when salt was added to the substrates.ConclusionMinor modifications of the BG-Sentinel™ mosquito trap turned it into a powerful bioassay tool for evaluating the orientation of gravid mosquitoes to putative oviposition substrates using olfaction. This study describes a useful tool for investigating olfactory attraction of gravid An. gambiae s.s. and provides additional evidence that gravid mosquitoes of this species are attracted to and can be baited with attractive substrates such as organic infusions over a distance of several metres.

Highlights

  • Cues that guide gravid Anopheles gambiae sensu lato to oviposition sites can be manipulated to create new strategies for monitoring and controlling malaria vectors

  • The modified BG-Sentinel gravid mosquito trap is an effective tool for analysing oviposition attraction of malaria vectors under semi-field conditions When two traps baited with distilled water were provided in choice tests, 45 % of the released mosquitoes were recovered

  • Gravid mosquitoes were twice as likely to be trapped in BG-sentinel gravid mosquito traps when the test trap contained soil infusion as when the test trap contained distilled water in the bioassays with two equal choices

Read more

Summary

Introduction

Cues that guide gravid Anopheles gambiae sensu lato to oviposition sites can be manipulated to create new strategies for monitoring and controlling malaria vectors. Extensive behavioural and chemical ecology studies on host-seeking members of the Anopheles gambiae species complex (including Anopheles gambiae sensu stricto (s.s.) and Anopheles arabiensis) which are the primary vectors of malaria in sub-Saharan Africa, have led to considerable progress towards identification of odourants from skin emanations of humans and other primary blood meal hosts [14, 15] and host plants [16]. These volatiles have been incorporated into baits and tested in traps [16, 17]. Whilst a range of physical and chemical cues associated with the aquatic habitat have been suggested [18,19,20,21,22] empirical evidence is scarce and restricted to cage and electrophysiological studies not least due to the lack of appropriate bioassay tools

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.