Abstract

Ischaemic heart disease is one of the world’s most important causes of mortality, so improvements and rationalization of diagnostic procedures would be very useful. The four diagnostic levels consist of evaluation of signs and symptoms of the disease and ECG (electrocardiogram) at rest, sequential ECG testing during the controlled exercise, myocardial scintigraphy, and finally coronary angiography (which is considered to be the reference method). Machine learning methods may enable objective interpretation of all available results for the same patient and in this way may increase the diagnostic accuracy of each step. We conducted many experiments with various learning algorithms and achieved the performance level comparable to that of clinicians. We also extended the algorithms to deal with non-uniform misclassification costs in order to perform ROC analysis and control the trade-off between sensitivity and specificity. The ROC analysis shows significant improvements of sensitivity and specificity compared to the performance of the clinicians. We further compare the predictive power of standard tests with that of machine learning techniques and show that it can be significantly improved in this way.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.