Abstract
We propose a set of statistical metrics for making a comprehensive, fair, and insightful evaluation of features, clustering algorithms, and distance measures in representative sampling techniques for microprocessor simulation. Our evaluation of different clustering algorithms using these metrics shows that CLARANS clustering algorithm produces better quality clusters in the feature space and more homogeneous phases for CPI compared to the popular k-means algorithm. We also propose a new micro-architecture independent data locality based feature, Reuse Distance Distribution (RDD), for finding phases in programs, and show that the RDD feature consistently results in more homogeneous phases than the Basic Block Vector (BBV) feature for many SPEC CPU2000 benchmark programs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of High Performance Computing and Networking
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.