Abstract

Recently, closed cycle magnetohydrodynamic power generation system research has been focused on improving the isentropic efficiency and the enthalpy extraction ratio. By reducing the cross-section area ratio of the disk magnetohydrodynamic generator, it is believed that a high isentropic efficiency can be achieved with the same enthalpy extraction. In this study, the result relating to a plasma state which takes into account the ionization instability of non-equilibrium seeded plasma is added to the theoretical prediction of the relationship between enthalpy extraction and isentropic efficiency. As a result, the electron temperature which reaches the seed complete ionization state without the growth of ionization instability can be realized at a relatively high seed fraction condition. However, the upper limit of the power generation performance is suggested to remain lower than the value expected in the low seed fraction condition. It is also suggested that a higher power generation performance may be obtained by implementing the electron temperature range which reaches the seed complete ionization state at a low seed fraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.