Abstract

Cellular genes including the type I interferon genes are activated in response to viral infection. We previously reported that IRF-3 (interferon regulatory factor 3) is specifically phosphorylated on serine residues and directly transmits a virus-induced signal from the cytoplasm to the nucleus, and then participates in the primary phase of gene induction. In this study, we analyzed the molecular mechanism of IRF-3 activation further. The formation of a stable homomeric complex of IRF-3 between the specifically phosphorylated IRF-3 molecules occurred. While virus-induced IRF-7 did not bind to p300, the phosphorylated IRF-3 complex formed a stable multimeric complex with p300 (active holocomplex). Competition using a synthetic phosphopeptide corresponding to the activated IRF-3 demonstrated that p300 directly recognizes the structure in the vicinity of the phosphorylated residues of IRF-3. These results indicated that the phosphorylation of serine residues at positions 385 and 386 is critical for the formation of the holocomplex, presumably through a conformational switch facilitating homodimer formation and the generation of the interaction interface with CBP/p300.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call