Abstract

We theoretically and experimentally analyze unintentional intensity modulation phenomena in two types of all-fiber acousto-optic tunable filters utilizing flexural and torsional acoustic waves. Output filter signal at a resonant wavelength shows time-varying oscillations with even- and odd-order harmonics of applied acoustic frequency, which are explained by two factors of static mode coupling and acoustic back reflection. The magnitudes of static coupling and acoustic reflection in our devices are estimated from the measured first and second harmonic modulation powers.

Highlights

  • Various types of tunable optical filters such as Fabry Perot interferometer, fiber Bragg grating, electro-optical tunable filter, and ring resonator tunable filter are in common use in optical communication and sensor systems [1]

  • Output filter signal at a resonant wavelength shows time-varying oscillations with evenand odd-order harmonics of applied acoustic frequency, which are explained by two factors of static mode coupling and acoustic back reflection

  • The all-fiber acousto-optic tunable filters (AOTFs) have been demonstrated based on wavelength selective acousto-optic (AO) mode coupling by traveling flexural [2, 3] or torsional acoustic wave [4,5,6]

Read more

Summary

Introduction

Various types of tunable optical filters such as Fabry Perot interferometer, fiber Bragg grating, electro-optical tunable filter, and ring resonator tunable filter are in common use in optical communication and sensor systems [1]. Abstract: We theoretically and experimentally analyze unintentional intensity modulation phenomena in two types of all-fiber acousto-optic tunable filters utilizing flexural and torsional acoustic waves. Output filter signal at a resonant wavelength shows time-varying oscillations with evenand odd-order harmonics of applied acoustic frequency, which are explained by two factors of static mode coupling and acoustic back reflection.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.