Abstract

We theoretically investigated the physical properties, including the frontier orbital and excitation energies, for thiophene-based semiconducting polymers composed of donor and acceptor units. Orbital analysis revealed that remarkably different behaviors of frontier orbital energies with respect to the degree of polymerization stems from the distribution of the frontier orbitals, which is insightful information for controlling the ionization potentials and electron affinities of semiconducting polymers. We also successfully estimated the frontier orbital energies of the polymers through a simple Huckel theory-based analytical model parametrized from calculations of relatively small oligomers. This simple model allows us to predict the highest occupied molecular orbital–lowest unoccupied molecular orbital gaps of a polymer at a low computational cost. The simulated absorption spectra of the thiophene-based semiconducting polymers were compared with the experimental spectra. The theoretically designed polym...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.