Abstract

Abstract Based on the dynamic cavity-expansion theory and momentum theorem, the key parameters of projectile penetrating into concrete target, i.e., the penetration time and time histories of DOP, deceleration, mass loss, instant mass loss rate and nose shape, are obtained by incremental calculation considering mass loss of projectile. The calculation results are consistent with the experimental results. Due to the mass loss and thus nose blunting effects, the pulse shape of deceleration may be quite different from that obtained in the analysis of a rigid projectile, and then the dissimilarity is analyzed. It is found that the pulse shape of deceleration is determined by the drag force and essentially determined by the performances of target and projectile, i.e., the shear strength of target, the Moh’s hardness of aggregate in concrete and the CRH value of projectile nose. Further analysis indicates that the pulse shape of deceleration is more sensitive to the performance of target than that of projectile.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.