Abstract

Benzoate (found in milk and widely used as preservative), salicylate (present in fruits and the active component of aspirin), dietary polyphenols produced by gut microbiota, metabolites from organic acidemias, and medium-chain fatty acids (MCFAs) are all metabolised/detoxified by the glycine conjugation pathway. Xenobiotics are first activated to an acyl-CoA by the mitochondrial xenobiotic/medium-chain fatty acid: CoA ligases (ACSMs) and subsequently conjugated to glycine by glycine N-acyltransferase (GLYAT). The MCFAs are activated to acyl-CoA by the ACSMs before entering mitochondrial β-oxidation. This two-step enzymatic pathway has, however, not been thoroughly investigated and the biggest gap in the literature remains the fact that studies continuously characterise the pathway as a one-step reaction. There are no studies available on the interaction/competition of the various substrates involved in the pathway, whilst very little research has been done on the ACSM ligases. To identify variants/haplotypes that should be characterised in future detoxification association studies, this study assessed the naturally observed sequence diversity and protein expression variation of ACSM2A and ACSM2B. The allelic variation, haplotype diversity, Tajima's D values, and phylogenetic analyses indicated that ACSM2A and ACSM2B are highly conserved. This confirmed an earlier hypothesis that the glycine conjugation pathway is highly conserved and essential for life as it maintains the CoA and glycine homeostasis in the liver mitochondria. The protein expression analyses showed that ACSM2A is the predominant transcript in liver. Future studies should investigate the effect of the variants identified in this study on the substrate specificity of these proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.