Abstract

A cell-based smoothed three-node Mindlin plate element (CS-MIN3) based on the first-order shear deformation theory (FSDT) was recently proposed for static and dynamic analyses of Mindlin plates. The CS-MIN3 overcomes shear-locking phenomena and has a faster convergence compared with the original MIN3. In addition, the CS-MIN3 uses only three-node triangular elements that can be easily generated automatically for arbitrary complicated geometric domains. This paper extends the CS-MIN3 by integrating itself with the Timoshenko beam element to give a new stiffened plate element for static, free vibration and dynamic responses of stiffened plates resting on viscoelastic foundation subjected to a moving load. The viscoelastic foundation is modeled by discrete springs and dampers, and the displacement compatible condition between the plate and the stiffener is imposed. Some benchmark numerical examples were performed to illustrate the good agreement of the CS-MIN3 results with those by other methods in the literature to illustrate its accuracy and reliability. In addition, some new numerical examples that consider the effects of stiffeners on the behaviors of plate resting on viscoelastic foundation are conducted. The results demonstrate the expected properties in which the deflection of the stiffened plate resting on viscoelastic foundation can be reduced significantly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call