Abstract

The spatial structures of turbulent flow in the atmospheric boundary layer (ABL) are complex and diverse. Multi-point spatial correlation measurements can help improve our understanding of these structures and their statistics. In this context, we investigate Taylor’s hypothesis and the statistics of spatial structures on the microscale. For the first time, simultaneous horizontally distributed wind measurements with a fleet of 20 quadrotor UAS (unmanned aerial systems) are realized. The measurements were taken at different heights and under different atmospheric conditions at the boundary layer field site in Falkenberg of the German Meteorological Service (DWD). A horizontal flight pattern has been specifically developed, consisting of measurements distributed along and lateral to the mean flow direction with separation distances of 5ldots 205 m. The validity of Taylor’s hypothesis is studied by examining the cross-correlations of longitudinally distributed UAS and comparing them with the autocorrelations of single UAS. To assess the similarity of flow structures on different scales, the lateral and longitudinal coherence of the streamwise velocity component is examined. Two modeling approaches for the decay of coherence are compared. The experimental results are in good agreement with the model approaches for neutral atmospheric conditions, whereas in stable and convective ABL, the exponential approaches are not unconditionally valid. The validation results and the agreement with the literature on coherence in the ABL underline the potential of the UAS fleet for the purpose of spatial turbulence measurements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call