Abstract

(1) Background: Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the evolutionary traits of its variants have been revealed. However, the temporal order of the majority of mutations harbored by variants after the closest ancestors (or precursors), as "missing links", remains unclear. In this study, we aimed to unveil such missing links based on analyses of S protein homology by focusing on specimens with incomplete sets of S protein mutations in a variant. (2) Methods: Prevariant and postvariant mutations were defined as those before and after the variant's development, respectively. A total of 6,758,926 and 14,519,521 genomes were obtained from the National Center for Biotechnology Information and the GISAID initiative, respectively, and S protein mutations were detected based on BLASTN analyses. (3) Results: The temporal order of prevariant mutations harbored by 12 variants was deduced. In particular, the D950N mutation in the Mu variant shows V-shaped mutation transitions, in which multiple routes of evolution were combined and resulted in the formation of a V-shaped transition, indicating recombination. (4) Conclusions: Many genome data for SARS-CoV-2 unveiled the candidate precursors of Mu variant based on a data-driven approach to its prevariant mutations in each nation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.