Abstract

AbstractThis article presents reaction rate data for the simple hydrolysis of acetic anhydride in the acetonitrile/water and acetone/water cosolvent systems and regression analyses using recently developed thermodynamic rate equations that contain electrostatic and solvent‐solute terms. The isomole fraction plots for these reaction systems are linear, and previous theoretical work has shown that the electrostatic term is negligible for such systems. On the other hand, the reaction rates are dependent upon the cosolvent mole fraction, indicating that the solvent‐solute term, which is modeled empirically, is significant. The results of the analyses provide the foundation for a paradigm shift away from the emphasis on electrostatic effects to more tenable explanations of kinetic behavior in solvent systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.