Abstract
Establishment of a press forming method of carbon fiber reinforced plastic (CFRP) is desired. However, fundamental research on a ductility improving mechanism of CFRP is still insufficient. Since unidirectional CFRP shows different characteristics in compression and tensile deformation, accurate expression in both characteristics is necessary to investigate factors that affect formability. To express fiber kinking and ductile behavior of resin, a microscale model that separated fiber and resin was made. The fiber part in FEM model was tilted as initial misalignment and Gurson-Tvergaard-Needleman (GTN) model was applied to the resin part. To investigate the influence of design parameters such as temperature and initial void fraction on formability, this study performed tensile, compression and bending analyses by changing the resin temperature and initial void fraction. Results of compression analysis showed that the higher the temperature and initial void fraction, the earlier fiber kinking occurrence. Bending analysis showed a similar tendency. These results are physically reasonable. Therefore, these numerical experiments confirmed that the model used in this research is valid for studying factors that affect formability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.