Abstract

Head injuries in the vehicle crashes or pedestrian accidents can usually cause death or permanent disabilities, and head injuries resulting from the impact of car windshields remain a major problem. Anatomically, more realistic head models are required to more accurately document and evaluate the head-to-windshield impact responses and head injuries. The current study developed a head finite element model and carried out various simulations to investigate the head-to-windshield impact biomechanical responses and assess the head injuries. First, a 50th percentile three-dimensional finite element head model was developed and validated by using previously published cadaver experimental data. Then, the biomechanical responses were predicted under a head-to-windshield impact at different impact velocities (10, 12, and15[Formula: see text]m/s) and different inclination angles of the windshield (35∘, 40∘, and 45∘). Finally, head injuries were investigated through examining various injury parameters. The results indicated that the contact force, the acceleration, the intracranial pressure, the deformation of the skull, and the negative pressure rose when the impact velocity and the inclination angles increased. Thus, the vehicle impact velocity and the inclination angle of the windshield greatly affect the severity of the resulting injuries on pedestrians’ heads, with the severity increasing with the impact velocity and windshield inclination angle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.