Abstract

BackgroundHair fibre length is an important economic trait of rabbits in fur production. However, molecular mechanisms regulating rabbit hair growth have remained elusive.ResultsHere we aimed to characterise the skin traits and gene expression profiles of short-hair and long-hair rabbits by histological and transcriptome analyses. Haematoxylin-eosin staining was performed to observe the histological structure of the skin of short-hair and long-hair rabbits. Compared to that in short-hair rabbits, a significantly longer anagen phase was observed in long-hair rabbits. In addition, by RNA sequencing, we identified 951 genes that were expressed at significantly different levels in the skin of short-hair and long-hair rabbits. Nine significantly differentially expressed genes were validated by quantitative real-time polymerase chain reaction. A gene ontology analysis revealed that epidermis development, hair follicle development, and lipid metabolic process were significantly enriched. Further, we identified potential functional genes regulating follicle development, lipid metabolic, and apoptosis as well as important pathways including extracellular matrix-receptor interaction and basal cell carcinoma pathway.ConclusionsThe present study provides transcriptome evidence for the differences in hair growth between short-hair and long-hair rabbits and reveals that lipid metabolism and apoptosis might constitute major factors contributing to hair length.

Highlights

  • Hair fibre length is an important economic trait of rabbits in fur production

  • Histological analysis of skin and follicle morphology of short-hair and long-hair rabbits Complete hair follicle structure was observed in short-hair and long-hair rabbits at the fourth week of hair growth (Fig. 1a, b, g, h), which indicated that the hair follicles were in the anagen phase in short-hair and long-hair rabbits

  • The hair follicle structure remained intact at the eighth week in long-hair rabbits (Fig. 1e, k), whereas, the hair follicles of short-hair rabbits significantly shrunk and finger-like papillae atrophied up to the arrectores pilorum, which indicated that the hair follicles of short-hair rabbits at the eighth week had entered the telogen phase, resulting in the cessation of hair growth (Fig. 1f, l)

Read more

Summary

Introduction

Hair fibre length is an important economic trait of rabbits in fur production. Molecular mechanisms regulating rabbit hair growth have remained elusive. Rabbits are small mammals providing meat, and hair. Hair is produced from follicles as skin appendages unique to mammals that are characterised by periodic regrowth [1, 2]. Rabbit hair is one of the most favourite natural fibres used in textile industries. The key traits contributing to the economic value of rabbit hairs include fibre diameter, density, and length, which are determined by both genetics and the environment [3,4,5,6]. The mechanisms regulating hair traits are complicated. Understanding the genetic principles of hair traits

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call