Abstract

The excitation of low-lying isoscalar 2 + and 4 + states in 20Ne, 24Mg and 28Si by electron and proton scattering is studied. Large basis models of nuclear structure are used to determine both the electromagnetic and hadronic transition densities. The analyses of the longitudinal form factors obtained from electron scattering show that little or no effective charges are required with these nuclear structure models. Proton inelastic scattering to these states then is analysed to test effective forces based upon the Paris and Hamada-Johnston interactions. At intermediate energies (155 MeV) density-dependent t-matrices from both potentials were used with fits to data giving a clear preference for that based upon the Paris interaction. For lower energies only the Hamada-Johnston t-matrix is available and comparison of analyses of 24 and 49 MeV data made using this (complex) t-matrix with those in which the (real) Paris G-matrix is used as the effective force show a clear preference for the t-matrix. This is particularly the case with analyses of polarization data and suggests that the use of the G-matrix as an effective force in nuclear reaction calculations is inadequate even at low energies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.