Abstract

In direct sequence-optical code division multiplexing access (DS-OCDMA) system networks, data rate and data spreading technique involved in such systems require a high chip rate. Transmission link in these systems is significantly affected by the fiber chromatic dispersion. In this study, we have developed and employed a simple model to estimate the G652 fiber dispersion effects. OCDMA technique has been employed to investigate fiber chromatic dispersion effects on multiple access interference (MAI). We have found that, at a short optical fiber length, the optical fiber dispersion has a significant impact on the high data rate transmission systems (higher than 750Mbit/s). The performance and optimization of optical orthogonal code (OOC) in the OCDMA system is reported. We have demonstrated that, for a high data rate, even if dispersion compensated devices are not deployed, the BER can be significantly improved when the OOC desired length is selected. We have shown that when compensation dispersion devices are not deployed in the system, there is a trade off between the limited dispersion effects and the MAI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.