Abstract

Procedures have been developed for primary culture of 13th day mouse parietal and visceral endoderm, yolk sac mesoderm, and amnion cells. We have analyzed cell surface and secreted proteins of these cultures by labeling the cells with radioactive iodine, glucosamine, or amino acids, and/or by immunofluorescence. Cell surface and secreted proteins of visceral endoderm, yolk sac mesoderm, and amnion cells resemble each other closely, whereas parietal endoderm cells are strikingly different. Unlike the other cell types, parietal endoderm cells synthesize and secrete substantial quantities of a protein tentatively identified as procollagen. These cells also secrete a number of other glycoproteins not observed in the media from the other cultures. It is proposed that the procollagen and one or more of the other unique, secreted glycoproteins are normally constituents of Reichert's membrane. Compared to the other cultures, parietal endoderm cells appear to be deficient in production of LETS protein. However, parietal endoderm—Reichert's membrane complexes analyzed by immunofluorescence directly after dissection from the uterus show an abundant association with LETS protein. It is not clear whether this LETS protein is actually synthesized by the parietal endoderm cells themselves. If so, it is possible that this protein is rapidly degraded after its secretion in parietal endoderm primary cultures. The studies reported here represent a first step in the characterization of cell surface properties of embryonic and extraembryonic cell types. The information already accumulated should be useful in investigations aimed at identification of cells derived from blastocysts and teratocarcinomas in vitro.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.