Abstract

Composite materials prepared via laser cladding technology are widely used in die production and other fields. When a composite material is used for heat dissipation and heat transfer, thermal conductivity becomes an important parameter. However, obtaining effective thermal conductivity of composite materials prepared via laser cladding under different parameters requires a large number of samples and experiments. In order to improve the research efficiency of thermal conductivity of composite materials, a mathematical model of Cu/Ni composite materials was established to study the influence of cladding-layer parameters on the effective thermal conductivity of composite materials. The comparison between the model and the experiment shows that the model’s accuracy is 86.7%, and the error is due to the increase in thermal conductivity caused by the alloying of the joint, so the overall effective thermal conductivity deviation is small. This study provides a mathematical model method for studying the thermodynamic properties of laser cladding materials. It provides theoretical and practical guidance for subsequent research on the thermodynamic properties of materials during die production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call