Abstract

A Reynolds equation that considers both the smoothing hydrodynamic pressure and the pattern of surface topography at the polishing pads was used to solve the distribution of the hydrodynamic field. A three-body abrasion wear model for solving the removed thickness of silicon oxide films was also introduced to obtain the removal rate of SiO2 film in a chemical–mechanical polishing (CMP) process. The suction hydrodynamic pressure field expands its region with increasing groove width and decreasing depth of grooves. The flow rate of the slurry was thus increased, and the removal rate also increased with an increased number of abrasive particles. The solid contact pressure was much higher than the hydrodynamic pressure. The three-body abrasion for the wear depth of a particle arises from the solid contacting pressure and is hence more important than the hydrodynamic pressure. The removal rate of the SiO2 film was dominated by the number of abrasive particles, which was affected by the variation of the hydrodynamic pressure in addition to the wear depth controlled by the solid contact pressure. The thickness of the silicon oxide films removed increased with decreasing grooving width and depth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.