Abstract
In this study the nonlinear behavior of a buck converter was simulated and the responses of Phases 1 and 2 and the chaotic phase were investigated using changes of input voltage. After a dynamic system model had been acquired using basic electronic circuit theory, Matlab and Pspice simulations were used to study system inductance, resistance, and capacitance. The characteristic changes of input voltage, and phase plane traces from simulation and experiments showed nonlinear behavior in Phases 1 and 2, as well as a chaotic phase. PID control and Integral Absolute Error (IAE) were used as adaption coefficients to control chaotic behavior, and particle swarm optimization (PSO) and the genetic algorithm were used to find the optimal gain parameters for the PID controller. Simulation results showed that the control of chaotic phenomena could be achieved and errors were close to zero. Fuzzy control was also used effectively to prevent chaos. The experimental results also showed nonlinear behavior from Phases 1 and 2 as well as the chaotic phase. Laboratory experiments conducted using both PID and fuzzy control echoed the simulation results. The fuzzy control results were somewhat better than those obtained with PID.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.