Abstract

OBJECTIVES: The aim of this study was to analyse, firstly, the plantar pressure distribution in healthy subjects in order to validate or invalidate the previous studies results on the asymmetrical profile of the stance phase. The studies of asymmetries was based on the identification of a propulsive foot and a loading foot from a concept introduced by Viel. Secondly, the approach was applied to the study of gait asymmetries in two children with hemiplegic cerebral plasy. MATERIAL AND METHOD: Thirty healthy control subjects and two hemiplegic children (H1 and H2) performed a walking test at self selected speed. The recordings of dynamic parameters were realized thanks to an in-shoe plantar pressure analysis system (Parotec, by Paromed Medizintechnik, GMBH, Germany). The pressure peaks were determined from the recording of pressures under eight footprint locations. A program calculated the sum of forces under the heel and determined the loading foot. By defect, the second foot is the propulsive foot. RESULTS: The asymmetrical profile of the human normal stance phase was validated. Under the heel, the pressure peaks lower by 28 % were noticed beneath the loading foot compared to the propulsive foot. Inversely, under the metatarsal heads and the hallux, the pressure peaks were greater by 32 % beneath the propulsive foot. For the two hemiplegic children, the plantar pressure profile equally highlighted significant differences between the unaffected and affected feet. The pressure peaks under the affected heel were respectively lower by 21 % and 97 % for H1 and H2. The loading function was found and associated to the affected limb. The propulsive function was not systematically found under the unaffected foot. DISCUSSION: The analysis of plantar pressure measurements during able-bodied gait showed differences between the two lower limbs. These dynamic asymmetries are the results of a natural functional organization of the supports differentiating a loading foot and a propulsive foot and corroborating the concept proposed by Viel. The hemiplegic gait also presented dynamic asymmetries partially agreement with a personalized functional logic of loading and propulsion. However, the asymmetrical profile can also result a gait self-optimization strategy compensating biomechanical, anatomical and physiological disorders linked to the cerebral deficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.