Abstract
The parent phenol of adapalene and its (E)-cinnamic acid analogue were found to induce cancer cell apoptosis but cause adverse systemic effects when administered to mice. In contrast, their respective 5-Cl- and 3-Cl-substituted analogues had their adverse effects mitigated without a comparable loss of cancer cell inhibitory activity. As a result, pharmacologic space in this region of the cinnamic phenyl ring scaffold was explored. Various substituents were introduced, and their effects on cancer cell proliferation and viability were evaluated. Cinnamic acids having 3-Br, CN, NO(2), NH(2), OMe, and N(3) groups had activity comparable to that of 4-[3'-(1-adamantyl)-4'-hydroxyphenyl]-3-chlorocinnamic acid. A comparative molecular field analysis study indicated that introduction of an H-bond acceptor at position 3 of the central phenyl ring would favor inhibition of leukemia cell viability, and docking suggested its hydrogen bonding with a polar group in a small heterodimer partner homology model. The 3-CN, NO(2), NH(2), and OH analogues also inhibited MMTV-Wnt1 murine mammary stem cell viability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.