Abstract

BackgroundPrior work from these laboratories has centred on the development of enaminones as versatile intermediates for the synthesis of alkaloids and other nitrogen-containing heterocycles. In this paper we describe the enantioselective synthesis of indolizidine and quinolizidine analogues of bicyclic amphibian alkaloids via pyrrolidinylidene- and piperidinylidene-containing enaminones.ResultsOur previously reported synthesis of racemic 8-epi-indolizidine 209B has been extended to the laevorotatory enantiomer, (−)-9. Attempts to adapt the synthetic route in order to obtain quinolizidine analogues revealed that a key piperidinylidene-containing enaminone intermediate (+)-28 was less tractable than its pyrrolidinylidene counterpart, thereby necessitating modifications that included timing changes and additional protection–deprotection steps. A successful synthesis of [(1S,4R,9aS)-4-pentyloctahydro-2H-quinolizin-1-yl]methanol (−)-41 from the chiral amine tert-butyl (3R)-3-{benzyl[(1R)-1-phenylethyl]amino}octanoate (+)-14 was achieved in 14 steps and an overall yield of 20.4%.ConclusionThe methodology reported in this article was successfully applied to the enantioselective synthesis of the title compounds. It paves the way for the total synthesis of a range of cis-5,8-disubstituted indolizidines and cis-1,4-disubstituted quinolizidines, as well as the naturally occurring trans-disubstituted alkaloids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call