Abstract

Analogue gravity is based on a mathematical identity between quantum field theory in curved space-time and the propagation of perturbations in certain condensed matter systems. But not every curved space-time can be simulated in such a way. For analogue gravity to work, one needs not only a condensed matter system that generates the desired metric tensor, but this system then also has to obey its own equations of motion. However, the relation to the metric tensor usually overdetermines the equations of the underlying condensed matter system, such that they in general cannot be fulfilled. In this case the desired metric does not have an analogue.Here, we show that the class of metrics that have an analogue is larger than previously thought. The reason is that the analogue metric is only defined up to a choice of parametrization of the perturbation in the underlying condensed matter system. In this way, the class of analogue gravity models can be vastly expanded.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.