Abstract

Abstract An analogue circuit implementation is presented for an adaptive resonance theory neural network architecture, called the augmented ART-1 neural network (AART1-NN). The AART1-NN is a modification of the popular ARTl-NN, developed by Carpenter and Grossberg, and it exhibits the same behaviour as the ARTl-NN. The A ARTl-NN is a real-time model, and has the ability to classify an arbitrary set of binary input patterns into different clusters. The design of the AART1-NN circuit is based on a set of coupled nonlinear differential equations that constitute the AART1-NN model. The circuit is implemented by utilizing analogue electronic components such as operational amplifiers, transistors, capacitors, and resistors. The implemented circuit is verified using the PSpice circuit simulator, running on Sun workstations. Results obtained from the PSpice circuit simulation compare favourably with simulation results produced by solving the differential equations numerically. The prototype system developed here can be used as a building block for larger AARTI-NN architectures, as well as for other types of ART architectures that involve the AARTI-NN model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.