Abstract

Many problems in radar and communication signal processing involve radio frequency (RF) signals of very high bandwidth. This presents a serious challenge to systems that might attempt to use a high-rate analog-to-digital (ADC) to sample these signals, as prescribed by the Shannon/Nyquist sampling theorem. In these situations, however, the information level of the signal is often far lower than the actual bandwidth, which prompts the question of whether more efficient schemes can be developed for measuring such signals. In this paper we propose a system that uses modulation, filtering, and sampling to produce a low-rate set of digital measurements. Our analog-to-information converter (AIC) is inspired by the recent theory of Compressive Sensing (CS), which states that a discrete signal having a sparse representation in some dictionary can be recovered from a small number of linear projections of that signal. We generalize the CS theory to continuous-time sparse signals, explain our proposed AIC system in the CS context, and discuss practical issues regarding implementation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.