Abstract

In humans, functional magnetic resonance imaging (fMRI) activity in the anterior cingulate cortex (ACC) and the nucleus accumbens (NAc) appears to reflect affective and motivational aspects of pain. The responses of this reward-aversion circuit to relief of pain, however, have not been investigated in detail. Moreover, it is not clear whether brain processing of the affective qualities of pain in animals parallels the mechanisms observed in humans. In the present study, we analyzed fMRI blood oxygen level-dependent (BOLD) activity separately in response to an onset (aversion) and offset (reward) of a noxious heat stimulus to a dorsal part of a limb in both humans and rats. We show that pain onset results in negative activity change in the NAc and pain offset produces positive activity change in the ACC and NAc. These changes were analogous in humans and rats, suggesting that translational studies of brain circuits modulated by pain are plausible and may offer an opportunity for mechanistic investigation of pain and pain relief.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.